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Asingle-cell comparison of adultand
fetal human epicardium defines the age-
associated changesin epicardial activity
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Re-activating quiescent adult epicardium represents a potential therapeutic
approach for human cardiac regeneration. However, the exact molecular
differences betweeninactive adult and active fetal epicardium are not
known. In this study, we combined fetal and adult human hearts using
single-cell and single-nuclei RNA sequencing and compared epicardial

cells from both stages. We found that a migratory fibroblast-like epicardial
population only in the fetal heart and fetal epicardium expressed angiogenic
gene programs, whereas the adult epicardium was solely mesothelial and
immune responsive. Furthermore, we predicted that adult hearts may still
receive fetal epicardial paracrine communication, including WNT signaling
with endocardium, reinforcing the validity of regenerative strategies that
administer or reactivate epicardial cellsin situ. Finally, we explained graft
efficacy of our human embryonic stem-cell-derived epicardium model by
noting its similarity to human fetal epicardium. Overall, our study defines
epicardial programs of regenerative angiogenesis absent in adult hearts,
contextualizes animal studies and defines epicardial states required for
effective human heart regeneration.

Amajor challenge to human healthis that the adult human heart does The epicardium emerges from the proepicardium during cardio-
not regenerate. Myocardial infarction (MI) causes a permanent non-  genesis as a mesothelial layer of cells surrounding the heart'. During
contractile and non-conductive scar, whichleads to chronicheartfail-  development, epicardial cellsmay lose mesothelialidentity and undergo

ureand arrhythmia. Much interest has followed the epicardiumrecently  epithelial-to-mesenchymal transition (EMT), resulting in a population
forits key role in heart development and potential to contribute to  of epicardial-derived cells (EPDCs) that migrate into the myocardium®.
heart regeneration. These EPDCs may differentiate into smooth muscle cells, cardiac
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Fig.1| Composition and integration of adult and fetal hearts. Single-cell
datawere collected from sequencing of base and apex samples from seven

fetal hearts (a) and publicly available data of six healthy adult hearts (b). UMAP
embeddings of the remaining cells after quality control show integrated fetal
apex withbase (c) and integrated adult cells with nuclei (d). Stage integration and

dimension reduction of all sources show the overlap of stage and source (e) and
low-resolution clustering of cell types (f). This clustering shows the number of
epicardial cells found across all samples (g) and the basic cell type composition
of bothsampled hearts used in this analysis (h).

fibroblasts and, potentially, endothelial cells**. Furthermore, develop-
ing epicardial cells and EPDCs secrete potent factors, including WNT,
FGFs and PDGFs, which stimulate vasculogenesis and the proliferation
and maturation of cells within the myocardial tissue’. These develop-
mental abilities also translate into a regenerative role. Adult zebrafish
hearts are capable of regeneration, and developmental epicardial genes
become highly expressed at the infarcted region, coinciding with the
restoration of cardiac muscle®’. Likewise, when cardiac regeneration is
seen in embryos and neonates of small and large mammals, including
humans®°, the active epicardiumresponds with EMT and the secretion
of angiogenic factors'"2. However, these studies also illustrate that any
regenerative window in mammals soon disappears after birth.

In contrast, the adult mammalian epicardium is normally quies-
cent, withreduced secretory and migratory capacities, and, although
it appears to reactivate after injury, the response may not be strong
or rapid enough for sufficient regeneration®. However, there is evi-
dence that a properly active epicardium can still promote regenera-
tion of adult mammalian hearts; studies have established the efficacy
and essentiality of epicardial-directed repair mechanisms, such as
thymosin-f3-4, FGFs and even exosome-mediated signaling in success-
ful cardiacregeneration'*, Additionally, human embryonic stem cell
(hESC)-derived epicardium (hESC-EPI), when administered alongside
hESC-derived cardiomyocytes, increases vascularization, proliferation
and survival of myocardial tissue".

Altogether, the evidence suggests that the epicardium augments
heartregeneration and that timely reactivation of epicardial programs

offersapromising therapeutic strategy for treating Mlin humans. How-
ever, without anin-depth understanding of the epicardiumin humans,
our ability to translate these models into a therapeutic context is lim-
ited. Asitstands, itis still not fully knownif the adult human epicardium
retains gene expression from development or if its response to injury
issimilar tothat seeninanimals or howit relates to hESC-EPI. Addition-
ally, epicardial cells across many species and humans are identified
using WT1, TBX18 and TCF2I (refs. 18,19) but can be further divided
into heterogeneous subpopulations in zebrafish and in hESC-EPI?°7,
Additionally, adult human epicardium may be identified throughits co-
expression of BNCI and MSLN?. However, epicardial heterogeneity may
notoccur clearlyinmammalsin vivo* and has not been fully explored
inhumans of any age. Therefore, in light of this missing knowledge, we
attempted to define the key factors of epicardial-derived regeneration
that are lost in adults and aimed to capture the different transcrip-
tional states of human epicardium, define age-associated changes in
epicardial populations and reveal distinct signaling pathways that are
associated with fetal or adult epicardium.

We addressed our aims using single-cell RNA sequencing (scRNA-
seq) toisolate epicardial cellsin silico and mitigate biases from sorting
and selection. Although scRNA-seq data of both adult and fetal hearts
have been generated and analyzed independently, no attempt has
been made to combine them®**. We integrated adult and fetal human
hearts at a single-cell resolution, which allowed us to compare the
epicardiuminboth stages. We approached our dataset from multiple
angles and triangulated the epicardium in both adult and fetal cells
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Fig. 2|Identification of fetal-specific epicardial cells in human hearts. Higher-
resolution clustering of the integrated dataset reveals distinct stage-specific
epicardial and other cell type populations as shown in ai, a two-dimensional
UMAP of cluster assignments, and the fraction of fetal cells within each cluster
(aii). The absolute number of cells across fetal or adult conditions inb—a

bidirectional bar chart shows stage bias of each cluster. Differential expression
analysis between clusters with the top upregulated genes in c shows marker
genes used in cluster annotation and identification. d, The expression of
established markers of epicardial, fibroblast, smooth muscle cell (SMC) and
EMT markers within epicardial subpopulations.

using prior knowledge and unbiased clustering of datasets, both mixed
andseparated. This approach converged onadetailed profile of human
epicardial cells, allowing us to (1) identify fetal epicardial subtypes,
(2) createalibrary of epicardial markers for translating animal studies,
(3) reveal an angiogenic program of epicardial communication
not present in adult humans and (4) validate hESC-EPIs as a model of
human fetal epicardium.

Results

Two stages of the human heart are integrated

Seven healthy fetal hearts between the gestational ages of week 8 and
12 were dissected, taking the base and apex from six donors and the
apex attached to peeled epicardium from one (Fig. 1a). These 13 fetal
samples were dissociated, sequenced and aligned using Illumina’s 10x

scRNA-seq platform. Weremoved erythrocytes (Extended Data Fig. 1)
andpredicted doublets and lower-quality cells to obtain transcriptomes
for 47,473 fetal cells (Supplementary Table 1). In parallel, scRNA-seqand
single-nucleotide RNA sequencing (snRNA-seq) data from six healthy
adult hearts containing 37,462 cells and 153,053 nuclei were obtained
from the Heart Cell Atlas, selecting donors D2-D7 that contained at
least three mesothelial annotated cells** (Fig. 1b). We subsampled the
datasets before downstream integration to equalize group sizes and
reduce unwanted variability using multiple stratifications (Methods).
This resulted in a more balanced distribution of cell types, donors
and nuclei and amplified rarer cell type populations (Extended Data
Fig.1). After sampling, we were left with 29,779 transcriptomes from
adult heartcells or nuclei and 30,889 transcriptomes from fetal heart
cells (Supplementary Table 1).
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Fig. 3| Different human epicardial states are determined by gene modules.
a, Gene modules of the human epicardium were identified through adult versus
fetal differential expression analysis and co-occurrence clustering. b, Epicardial
cell states were identified using PCA, illustrating the cell sources (bi); previous
clustering of the heart cells at resolution 2 (bii); clustering across gene module
commitment (biii); and ranked age of samples (biv). Further PCA plots in ¢ show
the commitment of epicardial cells toward each gene module, and age-ordering
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Age-ordered clusters
of epicardial cells shows the age-associated changes in gene expressionin the top
20 gene from each module (d) and the age-associated changes in commitment
toward each module across epicardial clusters (e). f, Dot plot depicts Gene
Ontology biological process term enrichment for each module, showing scores
of significance and harmonic mean of recall and precision. Gene set significance
was calculated using hypergeometric tests (background genes, n = 27,956) and
adjusted for multiple comparisons using gprofiler’s g:SCS algorithm.

We thenintegrated the samples hierarchically using a reciprocal
principal component analysis (RPCA) integration pipeline from R pack-
age Seurat, combining sources within each donor first (Extended Data
Fig.1). Wenoted areasonable degree of overlap between sources at this
step (Fig.1c,d). Wethenintegrated the adult and fetal datasets, result-
ing in a correspondence between adult and fetal cells within clusters
(Fig. 1e). However, fetal cells were more loosely distributed between
the well-defined adult clusters, suggesting quantities of unspecified

and immature states of cell types still progressing toward their mature
adult equivalent (Fig. 1e). We began with low-resolution clustering
using the Louvain method of community detection to label basic cell
type annotations, arriving at ten low-resolution clusters (Fig. 1f), and
used differential expression analysis and previous adult annotations
to assign cell type labels and define the epicardial cell cluster (Fig. 1f).
We noted that the number of epicardial cells was highly varied among
donors, with most being found in fetal sample F7. However, there was
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no significant difference between the number of epicardial cells in
fetal or adult donors, suggesting that the proportion of epicardial
cells is not markedly different between stages (unpaired Student’s
t-test; P> 0.05) (Fig.1g). Overall, most clusters were distinct; however,
one cluster appeared to bridge between multiple other cell types and
expressed anambiguous range of developmental markers. This cluster
was composed mostly of fetal cells, which suggests that these were
largely unspecified immature cells (Fig. 1h).

Epicardial cells expressing EMT genes were absent in adult
hearts

We performed subclustering and iteratively aggregated these sub-
clusters together across several resolutions (Extended Data Fig. 2).
We sselected anintermediate resolution of 19 clusters for downstream
analysis where the epicardium was divided into three subpopulations:
8,9 and 10 (Fig. 2ai). Interestingly, we measured the fraction of fetal
cells and found that epicardial clusters 8 and 10 comprised 0.6% and
0% adult cells, respectively, suggesting fetal specificity. However,
cluster 9 was equally split between stages with 47.2% adult cells, sug-
gesting an age-persistent epicardial cell type (Fig. 2aii,b). We carried
out adifferential expression analysis amongall clusters and combined
the upregulated markers in each cluster with previous annotation of
adultcellsto determine the cell types present across both ages (Fig. 2c,
Extended Data Fig. 2 and Supplementary Table 2). In non-epicardial
cells, we found thatadipocyte cluster 1and stromal pericyte cluster 18
were almost entirely adult cells (Fig. 2aii,b). The three epicardial
subclusters expressed well-established epicardial signature genes
KRTI9, RARRES2, UPK3B, WT1 and BNCI (Supplementary Tables 3
and 4). However, we labeled cluster 8 as Epicardium_FB-like in light of
its expression of fibroblast genes, including DCN, COL1A1 and POSTN
(Fig.2c,d); cluster 9 as Epicardium_Mesothelial after previous annota-
tion and broad epicardial gene expression; and cluster 10 as Epicar-
dium_Proliferating with its expression of cell cycle and mitotic genes
CENPF and HMGB2 (Fig. 2c). Interestingly, the Epicardium_FB-like clus-
ter appeared to have low TBXI8expression, unlike the other epicardial
clusters, but expressed genes TWISTI and SPARC, which are strongly
associated with EMT (Fig. 2d). Based on this evidence, we describe the
fibroblast-like epicardial cells in cluster 8 as a transient population of
mesenchymal EPDCs not yet differentiated into epicardium-derived
lineages, which may not be present in the quiescent adult heart.

Aging epicardium loses many fetal epicardial gene programs
Weisolated epicardial clusters 8,9 and 10 and identified six distinct tran-
scriptional modules of co-expressed genes by analyzing dropout patterns
onlyinthe cells (Fig. 3a). Cellular commitment toward each module was
calculated asanew feature for principal component analysis (PCA) where
age and cell type were orthogonally represented by components 2 and
4 (Fig. 3b); component 1 appeared to be unwanted technical variation
(Methods, Extended Data Fig. 3). Finally, we re-clustered all epicardial
cellsinto 12 states by their commitment to each gene module using the
Louvain method of community detection (Fig. 3biii,c and Supplemen-
tary Table 5) and ordered them by mean cellular ranked-age to reveal
changesinmodule commitment and genes caused by aging (Fig.3d,eand
Extended Data Fig. 3). We found only one aging-associated module (A)
including the genes HP (haptoglobin), SLPI (secretory leukocyte pepti-
dase inhibitor) and PLA2G2A (phospholipase A2 group IIA) (Fig. 3d,e).
Commitmentto module Awasinitially lowinearly fetal states at13% and
increased throughout development, peaking at44%in adult cells (Fig. 3e).
However, fetal epicardium was committed to many distinct modules
(BtoE). Module Bwas seenexclusively in the epicardial state overlapping
with Epicardium_Proliferating cells (Fig. 3d,e), whereas all fetal epicardial
cellsappeared to be highly committed to module C, containing genes such
as TNNTI (troponin T1, slow skeletal type), SPARC (secreted protein acidic
and cysteine rich) and MGP (matrix gla protein). Adult cells expressed
between only 4% and 25% of module C genes.

Our mostinteresting finding was in module D, with high commit-
ment in Epicardium_FB-like cells belonging to epicardial states 6 and
3,with42% and 33% of its genes expressed, respectively (Fig.3b,c,e).In
contrast, adult mesothelial cells expressed between only 4% and 12% of
the genesin thismodule. Module D contained fibroblast genes POSTN
and DCN (Fig. 3d) and established markers of EMT, such as TWISTI,
suggesting a signature of EPDCs. Commitment toward module E was
seen mostly infetal Epicardium_Mesothelial cells, including the genes
SBSPON (somatomedin B and thrombospondin type 1domain contain-
ing), CXCL14 (C-X-C motif chemokine ligand 14) and SFRPS (secreted
frizzled related protein 5). Lastly, module F may have been associated
with technical variables, with more commitment seen in cells when
compared withnuclei (Extended Data Fig. 3).

Aging shifts epicardial focus from angiogenesis toimmune
response

We then examined the function of each gene module using GprofileR
in an over-representation analysis across Gene Ontology biological
processes. First, gene module D was enriched for pro-regenerative
processes related to angiogenesis, EMT and wound repair, including
blood vessel development, circulatory system development, angio-
genesis, cell migration and extracellular matrix organization (Fig. 3f
and Supplementary Table 6). Commitment of epicardium to module D
suggests that the fetal epicardium is poised for angiogenic response,
whereas the adult epicardiumis not. Second, we noticed that module
Awasbroadly enriched for processesinvolved in response to external
stimuli, including response to stress, defense and immune response
(Fig. 3f and Supplementary Table 6), suggesting that the human epi-
cardium transitions toward animmune-responsive state with age. This
unexpected result reveals an unexplored characteristic of epicardial
aging, which may beimportant for cardiovascular regeneration. Lastly,
we found broad developmental terms, including animal organ mor-
phogenesis and cell differentiation, enriched in the early mesothelial
module E and less-specific protein processing terms in fetal module
C (Fig. 3f). Processes found in module B also validated our labeling of
proliferative epicardium with the terms ‘cell division’ and ‘nuclear divi-
sion’. Insummary, these results suggest that aging reduces epicardial
commitment toward regenerative angiogenic programs. In particular,
itisimportant tonote that the epicardial population most committed
to the regenerative module D was absent in adults.

Epicardial markers reveal WNT signaling in fetal epicardium
We then evaluated the age selectivity of epicardial-specific genes by
carrying out differential expression analyses within each stage. After
removing genes describing non-epicardial differences between adult
and fetal stages, we found 633 genes upregulated in the epicardial clus-
ter when compared with other heart cell clusters (Wilcoxon rank-sum;
P<1x107° log,fold change > 0.5), constituting 147 fetal markers, 374
adult markers and 112 markers of both stages (Fig. 4a,b and Supple-
mentary Table 7). We also ranked the epicardial genes by their ability
to predict epicardial cells using precision, recall and F-score (Fig. 4c,
Extended Data Fig. 4 and Supplementary Table 8).

First, we found several genes markedly absentin adult epicardium:
SFRPS (secreted frizzled related protein 5), SFRP2, CXCL14 and COL9A3
(collagentypeIXalpha3 chain) (Fig.4b).Second, the fetal epicardium
was best predicted by the shared marker CA9 (carbonic anhydrase 9)
(F-score =0.51, precision = 0.3, recall = 0.81), followed by SFRP5, CFI
(complement factor 1), TNNTI, LY6H (lymphocyte antigen 6 family
member H) and LGALS2 (galectin 2). Most interestingly, we found that
SFRP5was one of 11 other fetal genes within the Gene Ontology process
canonical Wntsignaling pathway, including SFRP2, WNT2B (Wnt family
member 2B), RSPOI (respondin-1) and FGF9 (fibroblast growth factor 9).
SFRP2 and SFRPS are soluble pleiotropic modulators of WNT signal-
ing and may be essential in myocardial repair>*®, whereas WNT2B is
a canonical WNT ligand found to increase zebrafish cardiomyocyte
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proliferation after injury”. Additionally, RSPOI was recently implicated
in cardiomyocyte compaction during development and identified
in the epicardium of regenerating P1 neonatal mice but not in non-
regenerating P7 mice'>?. Lastly, FGF9is implicated in epicardial-medi-
ated regenerative signaling, including vasculogenesis®. Functionally,
this WNT component is of utmost relevance to epicardial-mediated
regeneration. Other notable fetal markers may promote regeneration,
such as CA9stimulating cell migration under hypoxiain mice** as well
as BMP3 (bone morphogenetic protein 3) and TGFB3 (transforming
growth factor beta 3).

Irrespective of age, our library identified UPK3B (uroplakin 3B)
as the most selective epicardial marker validated by reports of its
robust expression*>"* (Fig. 4¢). This was followed by two established
markers of epicardium: /TLNI (intelectin-1) and MSLN (mesothelin).
Interestingly, ITLNI was in adult module A, linking our results with a
clinically observed correlation of serum omentin-1with age®. We also
identified markers of the epicardium, such as KLK11I (kallikrein related
peptidase 11), CALB2 (calbindin 2) and SMPD3 (sphingomyelin phos-
phodiesterase 3) (Supplementary Table 8). In the adult epicardium,
we found that HPwas the best predictive coding gene (F-score = 0.44,
precision = 0.3, recall = 0.81) (Fig. 4c), followed by HASI (hyaluronan
synthase 1), SLPI (secretory leukocyte peptidase inhibitor), FAM153B

(family with sequence similarity 153 member B), ALOX15 (arachidonate
15-lipoxygenase) and RBP4 (retinol-binding protein 4). HP was seen
in older human fetal epicardium®, suggesting a marker of maturing
mesothelial cells that persists into adulthood (Fig. 4c).

Lastly, we found no clear marker of the fibroblast-like epicardial
population. However, we used UPK3B as a pan-epicardial marker and
repeated scoring between fibroblast-like cluster 8 and mesothelial
cluster 9 using only UPK3B® cells (Extended Data Fig. 4 and Supplemen-
tary Table 8). We found that mesothelial-specific PRG4 (proteoglycan
4)and /TLNI suggest spatial separation of epicardial cell types as PRG4
encodes lubricin secreted into pericardial fluid®, and ITLNI encodes
omentin-1associated with epicardial adipose tissue (Fig. 4c). Without
these proteins, EPDCs may be deeper within the myocardium than
their PRG4-producing counterparts. Other mesothelial genes were
AQPI1,PLA2G2A, SBSPON and TM4SF1 (Fig. 4c).Inthe EPDCs, we found
SEMA3D, involved in concerted endothelial cell migration®®; CCBEI,
important in mouse cardiac development®; EGFL6, associated with
angiogenesis®, and GPC3, reported to modulate WNT signaling®.
Overall, theseresults suggested further that these epicardial cells are
EPDCs no longer on the surface of the heart. Additionally, we showed
that, although aged epicardium maintains a recognizable identity, it
departs from our previous understanding and that aging establishes
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Fig.5|Stem-cell-derived epicardium models the in vivo epicardium. a, The
last 9 days of an hESC-EPI differentiation were sampled during scRNA-seq.
UMAP shows differentiation day (b); expression of previously identified sources
of epicardial heterogeneity (c); lineage separation (d); and random forest
classification of hESC-EPIs using anin vivo trained model (e). Differentiation
population dynamics are shown in f, over the course of differentiation.

g, hESC-EPI has a similar gene expression to fetal epicardium, the expression

of top 50 markers from the six in vivo epicardial gene modules A to F and

epicardial-specific genes from fetal, shared or adult sets. Within these groups,
notable epicardial genes TNNT1, MGP, SPARC, COL9A3, DCN, TWIST1, TFPI2,
POSTN, RAMP1, CXCL14, NRP2 and SLIT3 are highlighted. Each distribution’s
center horizontal line denotes population median, and box edges and whiskers
aredrawnat1and1.5x interquartile range, respectively. Distributions for each
box in g were drawn from n=94,206,73,227,56,244, 45,255,137,163,165,135,
315,100, 790 and 705 cells, respectively, in order of plotted groups.

anovel epicardial state. Lastly, these results continued to show that
key regenerative signaling is absent in adult epicardium, including
angiogenic WNT signaling.

Adult hearts still respond to fetal epicardial signaling

To examine the effects of restoring fetal states to adult epicardium,
we predicted paracrine interactions from the epicardium using Cell-
PhoneDB. First, we found more communication from fetal epicardium

in comparison with adult epicardium when interacting with other
cells of the adult heart. By restoring fetal states, the largest predicted
increase in epicardial communication was seeninendocardial, venous
endothelial and neuronal cell populations given by 88, 66 and 62 inter-
actions, respectively, from fetal Epicardium_FB-like compared with 30,
27 and 16 interactions from adult Epicardium_Mesothelial (Fig. 4d). We
thenfiltered these interactions for secreted epicardial-specific proteins
fromthe differential expression analysis (Fig. 4a,b) and found that the
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and DCN (bii), KRT19 and POSTN (biii) and MSLN and POSTN (biv). Images shown
arerepresentative of stains carried out on three sections, with each combination
on asingle heart: BRC2281 (bi and bii) and BRC2375 (biii and biv). c, Epicardial
clusters were mapped onto spatial transcriptomics data from a single fetal heart
using the Cell2Location algorithm. 9w4d, 9 weeks, 4 days.

volume of predicted communication between fetal epicardial and
adult endocardial cells could be pro-angiogenic (Fig. 4e). Our results
show that this was an age-associated loss of epicardial secretions as
opposedtoaloss of receptivity by adult hearts, aslow communication
from adult epicardium persisted even when interacting with the fetal
heart, whereas both adult and fetal hearts received similar signals from
fetalepicardium (Fig. 4e). Specifically, signaling from fetal epicardium
consisted of NRP2-mediated signaling with endothelial VEGFs. How-
ever, it is unknown whether epicardial NRP2 is soluble or membrane-
anchored as part of this established pathway of angiogenesis*>*'. We
alsofound further evidence of WNT signaling from the epicardium, with
WNT2B communication between fetal epicardium and FZD4 found on
adultendocardial, endothelial and stromal pericyte clusters. Reduced
FZD4 activity has been seen to markedly decrease vascular density in
kidneys*. These interactions corroborate fetal angiogenic potential
while highlighting target cells for epicardial WNT signaling. To our
surprise, only asmall volume of communication was seen with cardio-
myocytes fromboth adult and fetal epicardium (Fig. 4d). One of these
was another WNT signaling protein, RSPOI, predicted tointeract with
LRG4in cardiomyocytes as well as smooth muscle cells, adipocytes,
fibroblasts and neuronal cells (Fig. 4e). Lastly, we found TGFB3 signaling
infetal but not adult epicardium, agreeing with previous observations
of low expression in adults***. Of relevance to angiogenesis, TGFB3
was decreased in alow-EMT model of mouse epicardium while cor-
relating withreduced vascular density of adjacent myocardium®, and
its elevated expression after MI might reduce scarring after injury*.
Interestingly, many fetal interactions were from epicardial-specific
collagens, such as COL11A1 and COL9A3 (Extended Data Fig. 4), which

may play animportant partin epicardial-mediated matrix reorganiza-
tion. Another epicardial collagen, COL3A1, was also found here but was
upregulated more broadly in fetal hearts when compared with adults
and was omitted (Supplementary Table 7). Lastly, the adult epicardium
was predicted to communicate with adult endothelial cells via EGFR,
a complex and pleiotropic regulator of proliferation and survival of
myocardial tissue (Fig. 4e). However, we could not determine if epi-
cardial EGFR was a soluble form. Other adult epicardial interactions
agree with adult immuno-inflammatory focus, with members of the
TNF ligand or receptor superfamilies TNFSF14 or TNFRSFI11B, inter-
leukins /L15 and /L6 and chemokines CCL2 and CXCL1I seen to interact
withreceptors onendothelial cells as well as other cells of the adult or
fetal heart. Additionally, adult epicardial PLA2G2A interacting here
withintegrin complexes has previously been associated with coronary
heart disease and infarction*®. These results provide evidence that an
insitureactivation of fetal epicardial programs mightincrease regen-
erative communication with endothelial cells to drive angiogenesis
and vascularization, which are key processes in cardiac regeneration.

hESC-derived epicardium closely resembles fetal epicardium

We previously harnessed active epicardium to augment heart regen-
erationusing hESC-EPIsinsitu”. However, the mechanisms governing
this therapeutic success were unknown. To address this and identify
commonalities betweenin vitro andin vivo epicardium, we harvested
hESC-EPIs during the final 9 days of differentiation* and generated an
scRNA-seq time course (Fig. 5a,b). This protocol yields a heterogeneous
epicardium?, confirmed in our results as a divergent differentiation
into two branches, which expressed either PODXL and BNCI (lineage A)
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or TCF21and THYI (lineage B) (Fig. 5¢,d). To determine how well hESC-
EPI models in vivo epicardium, we trained a random forest classifier
ontheadultandfetalin vivo heart scRNA-seq high-resolution clusters
and found that the number of epicardial predictions increased over
differentiation, occurring in lineage A (Fig. Se,f). In contrast, lineage
B became classified as fibroblasts or fibroblast-like cells (Fig. 5e,f).
Performance of our model was assessed using six-fold cross-validation
where the non-proliferating epicardial clusters were predicted with
high accuracy (Extended Data Fig. 5). Theseresults reflect the separa-
tion of Epicardium_Mesothelial and Epicardium_FB-like populations
found in vivo. Both populations appeared to stem from a population
predicted as fetal Immature_FB-like cells (Fig. 5f).

We then calculated the mean expression of epicardial gene mod-
ules during the hESC-EPI differentiation and found that angiogenic
module D increased throughout, reaching a similar expression to
the in vivo fetal epicardium (Fig. 5g). In contrast, adult module A was
absentin hESC-EPIs (Fig. 5g). We also noticed that the expression of the
more mesothelial gene module E appeared to be higherinthe PODXL*
branch A, agreeing withrandom forest predictions. We also observed
atransiently highinitial but decreasing expression of the proliferation-
associated gene module B (Fig. 5g). Additionally, we found that the
expression of many epicardial-specific genes increased throughout
differentiation, including TNNT1, MGP, SPARC and COL9A3inmodule C;
DCN, TWISTI, TFPI2, POSTN and RAMPI in module D; and CXCL14, NRP2
and SL/T3inmoduleE (Fig. 5g). Lastly, theinvitromodel also expressed
several epicardial WNT signaling genes, such as SFRP2, WNT2B and
TFPI2,seen more obviously in higher-depth sequencing data of hESC-
EPIs produced following the same protocol®. Conservation of these
genesacrossbothinvivoandin vitrosystemsimplies similar epicardial
function in both environments and highlights in vivo pathways that
hESC-EPIs may use when augmenting hESC-cardiomyocyte grafts".

EPDCs are found within the myocardium and sub-epicardial
space

Lastly, we used immunocytochemistry to spatially resolve fetal epi-
cardial cell populations in a strategy combining new markers from
our analysis and POSTN (periostin) highly expressed in gene module
D (Fig. 3d). We performed a uniform manifold approximation and
projection (UMAP) pseudostain on the integrated dataset (Fig. 2a)
for visualizing combinations of top epicardial markers in the red and
green RGB channels (Fig. 6a) and selected TM4SF1 and PRG4for separat-
ing Epicardium_FB-like and Epicardium_Mesothelial clusters; POSTN
and DCN for identifying EPDCs; and KRT19 and MSLN for the positive
selection of EPDCs against fibroblasts or endocardial cells. Our UPK3B
stain was ineffective (Extended Data Fig. 6). No co-localization was
observed between TM4SF1 or PRG4and POSTN or DCN, validating our
pseudostain and scRNA-seq analysis (Fig. 6bi,bii). However, co-local-
ization of POSTN was found with KRT19 or MSLN on the epicardium,
agreeing with shared fibroblast and epicardial genes seeninthe scRNA-
seq data (Fig. 6biii,biv). These double-positive cells were found in the
mesothelial layer but remained negative for PRG4 or TM4SFI1 and may be
switching state and preparing for EMT (Fig. 6b). Furthermore, we found
that POSTN' cells were also sparsely distributed within the myocardial
tissues and sub-epicardial layer, which indicates EPDCs that have lost
mesothelial hallmarks. We also analyzed spatial transcriptomics in one
fetal heart aged 9 weeks, 4 days and projected epicardial populations
spatially using Cell2Location (Fig. 6¢). We validated epicardial spots
using markers found in this study (Extended Data Fig.7) and also moni-
tored the spatial distribution of epicardial gene modules. However, this
was notinformative, asmodules were generated by comparing between
epicardial states, not between epicardial cells and other cells of the
human heart (Extended DataFig. 7). We found that epicardial clusters
were identified on the periphery of the myocardium as expected
(Fig. 6¢). However, although the Epicardium_Mesothelial cluster
remained in spots on the surface of the heart, the Epicardium_FB-like

cluster was enriched in spots deeper within the myocardium (Fig. 6¢).
Overall, these results provide further spatial evidence that our
fibroblast-like epicardium is a transient migratory EPDC population
that loses mesothelial identity after EMT, forming a key part of the
developmental and regenerative dynamics absent in adult hearts.

Discussion

Epicardial activity appearsto be animportant element of heart regener-
ation.Ontheone hand, active epicardium plays asubstantial rolein suc-
cessful cardiac regenerationin adult zebrafish, newts and developing
mammalian systems. Onthe other hand, the epicardiumis reportedly
quiescent in adult mammalian and human hearts, which lack regen-
erative capabilities. However, despite the apparentimportance of the
epicardium, few studies have yet defined how aging alters the regenera-
tive programs in human epicardial cells, presenting an opportunity for
finding novel therapeutic mechanisms in treating ischemic injury. In
addressing this unexplored space, we combined and compared fetal
and adult hearts from humans at single-cell resolution, to our knowl-
edge for the first time, and focused on epicardial cells within them.
We revealed both compositional and molecular differences between
the adult and fetal epicardium that, in part, may underpin the limited
regeneration seeninadult human hearts. We found that the adult epi-
cardium (1) has alimited population of mesenchymal EPDCs; (2) has
reduced paracrine communication; (3) lacks fetal-specific regenerative
and angiogenic epicardial gene programs; and (4) is more primed for
response to immune stimuli.

This is the first time that human EPDC transcriptomes have been
described at asingle-cell resolution, as determined by their expression
of mesenchymal genes TWISTI and SPARC as well as the combined
expression of known epicardial and fibroblast genes. These character-
isticsare shared with cell populations found in developing mouse and
chick hearts'**2, Additionally, the position of these cells was consistent
with migrating EPDCs usingimmunohistochemistry using antibodies
for POSTN, TM4SF1 and established epicardial markers. A major find-
ing of our study was the lack of EPDCs in adult human cardiac tissue.
This might be explained by quiescent adult epicardial cells being less
responsive to EMT-driving stimuli as previously demonstrated in cul-
tured adult EPDCs*%. Current knowledge suggests that epicardial cells
undergo EMT, forming EPDCs, which subsequently differentiate into
other cardiac cell types**, resulting ina departure from epicardial cell
states. Therefore, we hypothesize that fewer migrating adult epicardial
cellsresultsinareduced quantity of transient EPDCs at steady state due
to differentiation or efflux from the transient EPDC cell type.

Our results agree with current understanding of adult epicardial
quiescence, and, although experiments have shown that adult epi-
cardial cells may be pro-regenerative when transplanted, these cells
are either primed or likely primed during culture conditions'*’. Our
study is the first exhaustive documentation of the age-associated
loss of epicardial signals involved in angiogenesis, proliferation and
survival in healthy non-primed adult epicardium. For human heart
regeneration, one strategy is to restore epicardial activity by reverting
the adultepicardium to fetal states or by administering active epicar-
dial cells generated from pluripotent stem cells*. Our study provides a
roadmap for this translational effort, as, for the first time, we now have
atranscriptome-wide description of the ingredients required to bring
fetal-like regenerative function back into adult epicardium. First, the
regenerative human epicardium may drive angiogenesis through NRP2,
VEGFA, CXCL14 and SLIT3withadultendothelial cells; new vessel growth
is likely sourced from pre-existing endothelial cells’>". Angiogenesis
resulting from these interactions has been confirmed in mice where
epicardial SLIT2-mediated co-localization with ROBO4-expressing
endothelial cells was essential for vascularization® and may also be
important for angiogenesis in human tissue®'. Furthermore, SLIT/ROBO
signaling may also involve epicardial CXCL12/CXCR4 (refs.52,53) inan
interaction that may include the early epicardial-specific gene and
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allosteric CXCR4 and CXCL14. Interestingly, CXCL14has not been found
in animal epicardium to date and may be a key difference between
animal and human epicardial signaling. Second, we should also aim
toreactivate paracrine WNT signaling, including SFRPs2and 5, RSPO1
and WNT2B. Previous animal studies showed high SFRP2 expression
during cardiogenesis and regeneration with anti-fibrotic properties,
specifically in post-injury epicardium>>"**, However, SFRPS has not
been seen in animal studies and may be more relevant in humans.
Studies found that SFRP5Swas inversely proportional to cardiovascular
disease risk factors, positively correlated with faster recovery after
Ml and seen to protect against re-perfusion injury®**>*, Although the
local targets of these WNT proteins may be unknown, evidence sug-
gests that WNT2B may increase proliferation in cardiomyocytes and
fibroblasts?”*” and that restoring these elements of WNT signaling may
be key to adult heart regeneration. Other vital epicardial ingredients
involve extracellular matrix remodeling, proliferation and survival of
myocardial tissue driven by TGFB3, BMP3, RSPOI (ref. 28) and a variety
of epicardial-specific collagens, such as COL11A1I (ref. 58). Lastly, we
demonstrated that hESC-EPIs contain many of these ingredients and
have proven effectiveness in animal model grafts”, giving confidencein
thisrecipe, and that bringing fetal programs backinto adult epicardium
isaviable strategy for adult human heart regeneration.

Asurprising result was the focus of adult epicardium onresponse
to immune and external stimuli, which may be an undiscovered age-
associated element of normal epicardial aging. This observation adds
complexity and further weight to proper understanding of immune
responseregulationin cardiac regeneration as noted in experimental
evidence in mice where a rapid transient immune response is key for
proper regeneration". This disparity between fetal and adult response
programs places the epicardium further still as a key mediator of the
immune response in cardiac regeneration with a coordinated age-
associated upregulation of genes. Further still, this suggests that aging
may elevate epicardial immuno-sensitivity as opposed to elevating
the stimulatory abilities ofimmune cells. Lastly, our analysis also sug-
gests a component of programmed aging that governs the loss of
pro-regenerative functions with upregulated genes, such as PLA2G2A%
or TNFSF14 (ref. 60). These genes have been implicated in inhibiting
tumor angiogenesis and migration, which opens a discussion onwhat
elements require deactivation as well as reactivation to produce a
pro-regenerative epicardium.

Itisimportant to note that our study did not capture adult hearts
fromadiseased populationbut, instead, focussed on the healthy state.
Therefore, we could not compare the active fetal epicardiumto injury-
reactivated epicardium. We consider that these fetal programs could
alsobecome expressed intheinjury-reactivated adult epicardium. For
example, SFRP2 and SLIT3 are expressed in adult mice after injury’..
Indeed, one experiment in neonatal mice revealed anincrease in RSPO1
inthe regenerative P1but not in non-regenerative P7 hearts after MI'%.
This forms one independent validation of healthy-state adults as a
model of non-regenerative epicardium in humans, as RSPOI was also
decreased in our adult epicardium. In our analysis, we grouped epi-
cardial cells from multiple heart regions where there may be region-
specific cellular compositions'. However, this is unlikely to affect the
main biological comparison. On a final note, it is incorrect to assume
thatthe entire regenerative capacity of the heart restsupon the active
epicardium; other cells also play amajor role inregeneration. Address-
ing this comprehensively is beyond the scope of this study. However,
ourintegrated dataset may also be used for future tissue-targeted and
organ-wide studies on the age-associated changes in the human heart.

The next step for clinical translation is to disentangle the gene
networks that regulate adult and fetal epicardial states. In doing so,
we might identify the molecular switches required to revert the adult
epicardium into a fetal state and restore these key pathways. Finally,
because we have detailed both active and inactive states of the human
epicardium, benchmarked cross-species epicardial markers in humans

and shown that stem-cell-derived epicardium contains regenerative
epicardial programs, this study serves as a valuable roadmap toward
reactivating the adult epicardium and promoting heart regeneration
inadult humans.

Methods

Adult data collection

The unique molecularidentifier (UMI) counts matrix for 486,134 adult
heart cells or nuclei was acquired from the Heart Cell Atlas access-
ing the full version of the h5ad formatted dataset?. We then subset
this matrix to retain only the six donors (D2-D7) with at least three
cellsannotated as ‘meso’inthe available ‘cell_state’ metadata, leaving
190,515 nuclei or cells.

Fetal sample collection

Fetuses were obtained after elective termination of pregnancy with
full consent (approved by the ethics committee of NHS East of England
LREC no.96/085) and stored overnight in Hibernate-A Medium (Gibco)
at4 °C. The next day after collection, the apex and base of each heart
was dissected and dissociated®’. In brief, tissue was dissociated using
6.6 mg ml™ of Bacillus licheniformis protease, 5mM CaCl,and 20 U mI™*
of DNasel, where the mixture was triturated onice for 20 seconds every
5 minutes until clumps of tissue were no longer visible. The digestion
was stopped withice-cold10% FBS in PBS. For sample F5, the apex and
peeled epicardium was incubated with Liberase for 30 minutes, fol-
lowed by washes. Cells were then washed with 10% FBS, resuspended
in1 mlof PBS and viability assessed using Trypan blue. Cells were sub-
mitted for 10x library preparation for 3’ single-cell sequencing on a
NovaSeq 6000 (Illumina) using V3 chemistry at the Cancer Research
UK (CRUK) Cambridge Institute. Sample F5 was collected as a pilot
sample and prepared separately from the other fetal samples, and
only the apex attached to a careful epicardial peeling was taken and
dissociated. Sample F5 was sequenced independently at the Sanger
Institute using HiSeq 4000 (lllumina).

hESC-EPI differentiation and collection

Differentiation of epicardium was carried out according to our previ-
ously published protocols”. In brief, H9-hESCs (WiCell) were initially
differentiated into lateral plate mesoderm (LM) in the presence of FGF2
and BMP4.The LMis then exposed to WNT3A, BMP4 and retinoicacid,
resulting in hESC-EPIs after 8-9 days. Cells were harvested on days 1,
2,3,4,8and9 of differentiation after the LM stage by re-suspensionin
PBS. Samples were submitted for 10x library preparation for 3’ single-
cell sequencing at the CRUK Cambridge institute.

RNA-seq pre-processing and processing

For fetal samples F1, F2, F3, F4, F6 and F7, demultiplexing, cell call-
ing, alignment and counts matrix generation were carried out using
Cell Ranger version 6.1. For our pilot sample F5, an earlier version of
Cell Ranger was used. For the hESC-EPI samples, Cell Ranger version
3.02 was used. All samples were aligned against the human reference
genome GRCh38 using default parameters. After the counts matrices
were generated, all fetal samples were treated the same. Poor-quality
cellswere removed from the read counts matrices in R, retaining only
cells with a depth of between 1,000 and 15,000 UMIs, expression of
over 400 genes or fraction of mitochondrial genes under 15%. These
thresholds were chosen following the boundaries of the adult dataset.
Doubletsin fetal datasets were called using Scrublet®* on the UMI matri-
ces after alignment, with an expected doublet detection rate of 0.06.
Erythrocyte contamination was seenin fetal samples, and erythrocyte-
containing barcodes wereidentified using atwo-compartment Gauss-
ianmixture mode on the mean expression of hemoglobingenesineach
sample. Fetal samples were then integrated and clustered. Clusters
containing over 50% of the erythrocyte compartment were removed
(Extended Data Fig. 1). For adult samples, pre-processing steps were
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not repeated as they were carried out before downloading the data.
Finally, genes not expressed in any cell were removed from further
analysis, leaving 27,956 gene features.

Stratified sampling of datasets
Adult datawere subsampled across mixed stratifications of ‘cell_state’,
‘donor’ and ‘cell_source’ annotations after data acquisition before any
analysis. To do this, we built an algorithm using a single parameter x
to control the sampling rate across K clusters of size Ny, where xis the
approximate sample size to take from each cluster K. Iteratively, our
algorithm randomly sampled cells from each donor in each cluster K
without replacement until the number of cells in the newly sampled
cluster, k, exceeded x (n, > x). For cases where Ny < x, the number of
sampled cellsis equal to the cluster size (n, = Ny), effectively sampling
all available cells and donors. This method was chosen to maximize
minority cluster representation in the combined dataset while reduc-
ing source and donor biases. Inthe adult data, we aimed to subsample
each ‘cell_state’ to the total number of epicardial cells (n=717) ina
two-stage sampling-stratified strategy. First, adult cells were sampled
from‘cell_state’ evenly distributed across ‘donor’ until each ‘cell_state’
consisted of at least the number of ‘Meso’-labeled nuclei (x,.; = 597).
Second and similarly, adult nuclei were sampled from ‘cell_state’ evenly
distributed across ‘donor’ until 597 nuclei were sampled from each
‘cell_state’ annotation (x,,..; = 597). Finally, these newly sampled cells
and nuclei were combined, and then the barcodes were re-sampled to
thesize of all‘Meso’-annotated barcodesin the ‘cell_state’ annotation
(Meso-labeled adult barcodes, x,,,. = 717) to create evenly distributed
groupsof cell source, donor and cell type witha maximum similar cell
type quantity to the number of epicardial cells (Extended Data Fig. 1).
Tosample cells from the fetal datasets before integration, we first
created new cell type stratifications. To do this, fetal samples were
integrated using Seurat’s RPCA pipeline®. Following the established
vignette, each fetal sample was log-transformed and scaled before
integrating. After PCA, nearest neighboring cells were calculated using
integrated distances, and fetal cells were clustered using the Louvain
method of community detection (cells = 47,473, neighbors =20, reso-
lution = 0.5). Thisresulted in 21 cluster-based stratifications that were
thensampled evenly across donors to achieve the size of the putative
epicardial cell population identified using canonical epicardial markers
(fetal epicardial cells, x;,,,=1,598) (Extended Data Fig. 1). The cluster-
ing parameters were chosen such that subsequent sampling of the
number of epicardial cells from each cluster will result in a balance of
adult and fetal cells in the sampled dataset (adult cells = 29,779, fetal
cells =30,889). We included all fetal epicardial cells with the aim of
retaining the maximum information available for this uncommon
cell population.

Integration of adult and fetal data

Raw UMI counts matrices of subsampled adult and fetal datasets were
combined following Seurat’s RPCA integration pipeline®. In brief, we
defined 24 new integration groups within the dataset combining the
unique combinations of ‘cell_source’ and ‘donor’ annotations. Each
integration group was then log-transformed and scaled individually,
and variable features were identified, followed by PCA. We selected
2,806 anchor genes for integration as found to be variable in at least
25% of theintegration groups. Additionally, to performour integration,
we defined ahierarchical sample tree forintegrating these 24 groups,
which prioritized (1) the donor-matchedintegration of adult nucleiinto
adult cells and fetal base into apex, followed by (2) integration between
fetal donors and then (3) integration of all adult data into fetal data
(Extended DataFig.1). We chose this method as our samples consisted
of different sequencing samples or datasources from the same donor
(four sources: nuclei, cell, apex and base). Clustering across the inte-
grated dataset was performed using the Louvain algorithmin Seurat,
giving tendistinct cell types (resolution = 0.1, kneighbors = 20). Each

celltype cluster was then similarly and separately subclustered, giving
56 high-resolution clusters. Then, to represent the data over multiple
celltype and state granularities, we aggregated these high-resolution
clusters together hierarchically by joining biologically similar cell
types together at decreasing resolutions until we arrived at the initial
low-resolution clustering (Extended Data Fig. 2).

Epicardial markers and epicardial markers library

A stage-separated epicardial marker analysis was performed in paral-
lel using the fetal and adult datasets after annotation with the newly
defined stage-independent clustersin Seurat with a one-cluster-versus-
all strategy on log-transformed counts across clusters of resolutions
1and 2. We used Wilcoxon rank-sum tests and applied thresholds of
P<1x107°and absolute log, fold change > 0.5 throughout the study
where significance scores were adjusted for multiple comparisons
using Bonferroni correction. In Fig. 1, we reported resolution 1 results
comparingthebroader gene expression of epicardial cells with all other
cell types without resolving epicardial subclusters. Additionally, two
lists of unwanted variation genes were created using differential expres-
sion analyses. The first list compared all adult cells and all fetal cells to
capture a non-specific age-associated gene list of six adult genes and
92 fetal genes. The second list compared adult cells and adult nuclei to
capturethe genes associated with the nuclei‘cell_source’,identifying 69
nucleigenes. These genes were omitted from theresultsand resultedin
633 and 724 epicardial genes at clustering resolutions 1and 2 (unique
from epicardial subclusters), respectively. The 724 resolution 2 marker
geneswere thenscored using the number of gene-positive cellsin each
group of fetal-epicardial, adult-epicardial or non-epicardial cells where,
foreachgeneandforeachgroup, weidentified its precision (analogous
tospecificity) determined by the fraction of positive cells that belong to
thegroup; recall (analogous to sensitivity), as the fraction of group cells
that were positive; and the F-score, calculated as the harmonic mean
betweenrecalland precision (F,=2 x (recall x precision)/ (recall + preci-
sion)). Tofurther enrich thislibrary distinguishing between epicardial
celltypes ‘FB-like’ and ‘Mesothelial’, we restricted the dataset to UPK3B*
cells as UPK3B. This was necessary as there were no clear single mark-
ers that separated the EPDCs from other cells of the heart as well as
epicardial cells. Using UPK3B" cells only, we then re-calculated recall,
precision and F-scores of the epicardial genes using the groups of ‘FB-
like’and ‘Mesothelial’. This generated alist of differential markers within
the UPK3B* population of cells to discern between potential EPDCs and
mesothelial epicardium. Then, for each group of ‘Fetal’, ‘Shared’, ‘Adult’,
‘Mesothelial’ or ‘EPDC’ cells, genes were re-ordered by subtracting the
F-score for other groups from the F-score for all groups. This resulted
ina per-group ordering of genes by selectivity.

Ligand receptor analysis with CellPhoneDB

The combined adult and fetal counts matrix was transformed into
counts per million (CPM) as recommended and subsequently log,-
transformed in the CellPhoneDB statistical analysis pipeline using
the curated interactions database (version 2.0)%*. For this analysis,
the adult epicardial subclusters of Adult_Epicardium_Proliferating
and Adult_Epicardium_FB-like were omitted as there were fewer than
threecellsineach (n=0and2, respectively). The numbers of significant
interactions for the remaining epicardial clusters were then countedin
either adult or fetal stages (P < 0.05) and visualized inan ordered heat
map. The results from CellPhoneDB were filtered in R, retaining only
epicardial-specific markers identified in the parallel marker analysis.
This was further filtered for putative secreted protein-coding genes
using the Human Protein Atlas as a reference.

Gene-gene co-occurrence and epicardial gene module
construction

Cells annotated as epicardium after clustering were isolated in a new
matrix, and a set of epicardial features for clustering was selected
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using differential expression analysis between adult and fetal epicar-
dial cells (Wilcoxon rank-sum test; P<1x 107, log, fold change > 0.5)
(Supplementary Table 10). After removing the previously identified
control genes, the epicardial matrix of 1,912 cells across 1,594 genes
was binarized, counting positive expression as a value of at least 1.
For gene module construction, this matrix was further subset to omit
nucleibarcodes, as gene clustering was shown to be affected largely by
their expression in nuclei or cells, giving a binary matrix of 1,315 cells
and 1,594 genes. However, nuclei were added back into the matrix after
module construction, and we observed that nuclei largely retained
genemodule patterns, independently validating our results. Weimple-
mented the approach by Qiu (ref. 65) in R to cluster gene-dropout
patterns. In brief, we calculated the co-occurrence of each gene pair
acrossall cells with amodified chi-square statistic. Then, for each gene
pair, all chi-square statistics below agiven threshold were discarded to
retain only the high-scoring gene-gene pairs. This threshold was cal-
culated using random permutations of the data. An undirected graph
of highly concerted genes was then formed from the remaining gene
pairs, weighted by the chi-square statistics and adjusted by aJaccard
index. Finally, this gene-gene graph was clustered using aconservative
Louvain method for community detection, removing all clusters with
fewer than20 genes. Genesin resulting gene modules were ordered by
their mean chi-square value with other genes in the module, ranking the
genes by pattern specificity. New gene module commitment features
for allepicardial cells, including nuclei, were calculated by the mean of
binarized expression of each gene module, and aPCA was carried out.
We represented components 2 and 4, as component 1 was technical
noise, correlating with library size and source (Kendall rank correlation,
P <0.05) (Fig.3b and Extended DataFig. 3), whereas components 2 and
4 correlated with cell type and age and were orthogonally represented
inthe PCA. The Louvain method for community detection was used to
generate epicardial states, and states were ordered by age using their
mean of PCA component 2, which highly correlated with the sample-
ranked age of each cell (Kendall'stau = -0.67,P < 0.01,n=1,912). Gene
set overrepresentation analysis of Gene Ontology terms across gene
moduleswas carried out using the R package gprofiler2 (ref. 66) against
abackground of all expressed genes in epicardial cells.

hESC-EPI analysis and classification

After pre-processing of the hESC-EPI data, 300 cells were randomly
sampled in silico from each timepoint. The sampled dataset of 1,800
cells was log-transformed, subjected to PCA and projected into two
UMAP dimensions using Seurat. The Louvain method of community
detection was then used to cluster cells, and the clusters were anno-
tated into either of previously identified lineages based on marker
expression. To classify the hESC-EPIs, a random forest classification
modelwastrained ontheinvivo dataset to discern among 34 cell types
in either adult or fetal stages from clustering resolution 3 (Extended
DataFig.4).Intraining and testing the random forest classifier, raw UMI
matrices were processed in an experiment-independent manner, and
cells were adjusted for library size using CPM and transformed using
log, with apseudocount of 1. Features selected for the model were the
top 50 differentially expressed marker genes from each cluster in the
resolution 2 clusters from the stage-separated analysis (Supplemen-
tary Table 2), giving a total of 1,445 unique features. The model was
constructed on a sample of 33% of cells and assessed using six-fold
cross-validation and independently validated on the remaining 66% of
cells (Extended DataFig.5). The sampled hESC-EPI dataset 0f 1,800 cells
was then predicted using the model trained on the 33% cell fraction.

Immunofluorescent staining

Fetal hearts were collected from donors BRC2281 and BRC2375, aged
9 weeks and 10 weeks, 3 days, respectively, and were dissected and fixed
in4% paraformaldehyde (Alfa Aesar) overnight with gentle rocking at
4°C. Then, cryoprotection was done in 30% sucrose (Sigma/Merck)

forafurther 24 hours at4 °C. Tissues were embedded in OCT (Sakura
Tek) and frozenondryice. Then, 10-um sections were cut serially using
aLeicacryostat. Sections were air dried for at least 10 minutes before
storage at —80 °C. Immunofluorescent staining was carried out by
thawing the slides for 10 minutes and rehydrating with tris-buffered
saline (TBS) for a further 10 minutes at room temperature. The tissue
was permeabilized for 10 minutesin a permeabilization buffer made up
of 0.25% saponinin TBS, followed by a 5-minute wash with 0.2% Tween
20in TBS. A 0.3 M glycine in antibody dilution blocking buffer was
applied for 1 hour. Then, this solution was decanted, and the primary
antibody solution was applied overnightat4 °C (all primary antibodies
were used atadilution of 1:100). The next day, the tissue was subjected
to three 5-minute washes, and the secondary antibody solution was
applied (all secondary antibodies were used at a dilution of 1:1,000)
for1houratroomtemperature. The secondary antibody solution was
washed for 5 minutes a following two times, and a DAPI solution was
addedatadiluation of1:2,000in TBS for 15 minutes at room tempera-
ture. This was washed for 5 minutes. To finish the process, VectaShield
was applied and a coverslip attached. Each tissue was left for at least
2 hours before imaging. The primary antibodies used in this study
forimmunofluorescentimaging included: UPK3B, PA552696 (Themo
Fisher Scientific); MSLN, sc33672 (Santa Cruz Biotechnology); KRT19,
sc6278 (Santa Cruz Biotechnology); POSTN, MAB3548 (R&D Systems);
DCN, AF143 (R&D Systems); PRG4, MABT400 (Sigma-Aldrich); and
TM4SF1, MAB8164 (R&D Systems). The secondary antibodies used
included: Alexa Fluor 488 donkey anti-rabbit A21206 (Invitrogen) for
UPK3B; AlexaFluor 647 goat anti-mouse A21240 (Invitrogen) for MSLN,
KRT19 and TM4SF1; Alexa Fluor 568 goat anti-rat A11077 (Invitrogen)
for POSTN; Alexa Fluor 647 chicken anti-mouse A21463 (Invitrogen)
for PRG4; and Alexa Fluor 568 donkey anti-goat A11057 (Invitrogen)
for DCN. A hydrophobic penwas used throughout the staining process
to surround the tissue.

Visiumslide and library preparation for spatial
transcriptomics and Cell2Location

Asingle heart, with a gestational age of 9 weeks and 4 days was frozen
and embedded in OCT medium using a dry-ice-cooled bath of iso-
pentane. OCT-embedded samples were sectioned using a cryostat
(Leica, CX3050S) and cutat10 pm.RNAintegrity number (fresh-frozen
samples) was obtained using an Agilent 2100 Bioanalyzer. The Tissue
Optimization protocol from 10x Genomics was performed to obtain
a permeabilization time of 35 minutes, and the Visium Spatial Gene
Expression experiment was performed as per the manufacturer’s proto-
col (10x Genomics). Hematoxylin and eosin (H&E)-stained Visium Gene
Expression slides were imaged at x40 on a Hamamatsu NanoZoomer
S60. After transcript capture, Visium Library Preparation Protocol
from10x Genomics was performed. The cDNA library was diluted toa
final concentration of 2.25 nM (200 pl volume) and sequenced on 2x
SP flow cells of Illumina NovaSeq 6000. Space Ranger (version 1.1.0,
10x Genomics) was used for the read-mapping to the human refer-
ence genome (GRCh38) with default parameters. Anatomical micro-
structures were manually annotated using the paired histology H&E
image. To map clusters onto Visium results, we used Cell2Location®.
Inbrief, Cell2Location first estimates reference signatures of cell types
obtained from the scRNA-seq data using a negative binomial regres-
sionmodel. Then, the abundance of each cell typeis calculated ineach
Visium spot by decomposing spot mRNA counts using the cell type
signatures. A spot resolution hyperparameter was estimated using
H&E-stained images of the Visiumslides, resulting in 20 cells per spot
for parameterizing the Cell2Location pipeline.

Ethics statement

Collection of human fetuses for this study from anonymous female
donors was approved by NHS East of England under LREC no. 96/085.
Fullinformed consent was given by all donors after elective termination
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of pregnancy. Donors were made aware of the possible use of donated
fetuses, and no financial compensation was given. Donors were free to
withdraw consent at any time.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Both raw and processed RNA sequencing data generated during this
study canbe found in the Gene Expression Omnibus using the accession
identifiers GSE216019 (fetal scRNA-seq data) and GSE216177 (hESC-EPI
differentiation). Matrices of adult heart scRNA-seq data are available
from the Heart Cell Atlas” and can be accessed at https://www.heartcel-
latlas.org/#DataSources. Specifically, the adult datafile accessed was
downloaded here: https://cellgeni.cog.sanger.ac.uk/heartcellatlas/
data/global_raw.h5ad. Finally, the integrated data combining both
adultand fetal datamay be explored interactively at http://sinha.stem-
cells.cam.ac.uk/. The humanreference genome (GRCh38) is available
at https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-
2020-A.tar.gz.

Code availability

The R code and reports generated during this analysis are
freely available from GitHub (https://github.com/Hindrance/
Adult_Foetal_Epicardial_ Comparison_2022).
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Stratified sampling, integration, and quality of adult
and fetal scRNA-seq datasets. Processing of adult and fetal datasets and
integration with a, subsampling stratifications and step-wise subsampling
strategy for adult cells and nuclei; b, naive integration of fetal data and uniform
manifold approximation and projection (UMAP) showing i, clustering; ii,
predicted doublets; iii, erythrocyte detection using a two-compartment
Gaussian mixture model on the summed expression of erythrocyte genes

HBB, HBG1, HBG2, HBM, HBA2, HBA1, HBQ1, ALAS2 allowing to identify; iv, high
erythrocyte fraction clusters for removal; validated by v, the summed expression
of erythrocyte genes. ¢, Fetal samples contained a greater quantity of i, UMIs and;
ii, unique genes expressed and were downsampled to 15 000 UMIs and; iii, the
resulting relationship between depth and complexity was similar in both adult
and fetal samples. Fetal datasets were integrated after erythrocyte removal as

shown and clustered ready for subsampling and integration as shown in

d, i-v, Louvain clustering using resolutions of 0.1-2 respectively. Resolution 0.5
was selected with 21 clusters, which when subsampled down to the number of
epicardial cellsidentified using epicardial markers such as vi, UPK3B (n =1598),
produced approximately the same number of fetal cells as subsampled

adult cells. Integration of subsampled adult and fetal data; e, was performed
hierarchically by prioritising donorsinacustom integration tree. Distributions
for each box in1c(i-ii) were drawn from n =1562, 3504, 5074,1479, 3454, 1866,
2845,2124,3400, 959,3763,4226,2072,1709,1941,1919, 8023, 724, 3630, 1832,
576,8597,5460, and 6764 cells respectively in the order of plotted groups. Each
distribution’s centre horizontal line denotes population median, while box edges
and whiskers are drawnat1and 1.5 x interquartile range respectively.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Annotation and clustering of integrated heart samples andiii-iv, aggregation of biologically similar cell clusters over two intermediate

was carried out over several resolutions. Integrated adult and fetal data were resolutions. Sub-clustering of low-resolution clusters depicted with; b sub-
iteratively clustered by aggregating high-resolution sub-clusters as shown cluster UMAPs illustrating the identification of cell types and states using
ina, uniform manifold approximation and projection (UMAP) embeddings previous adult annotations, cell sources, and unsupervised clustering.

showingi, 10 initial low resolution clustering followed by; ii, sub-clustering,
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Extended Data Fig. 3| Further observations and technical hurdles in
generating epicardial gene modules. The gene expression matrix of epicardial
cellswasisolated from the rest and binarised. Co-occurrence clustering of
genes including nuclei in the matrix created two gene modules and a, principal
component analysis (PCA) on cellular commitment to modules confirms that
the main separation of the dataset was between cells and nuclei. Gene Ontology
enrichment was carried out; b, revealing broad terms associated with nuclear

or cytosolic compartments. Use of Kendall’s rank correlation; ¢, between cell
variables and PCA components with components 2 and 4 highly correlating with
age and clusters resepctively as variables of interest for visualisation. d, the mean
expression of the 6 gene modules in the 19 resolution-2 clusters as well as cells
grouped by source and; e, the expression of the top 20 genes in each gene module
across age-ordered epicardial cells (age component PC2).
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Extended DataFig. 5| Training and validation of arandom forest on high- the coloured sub-plots. Cross-validation (6-folds) suggests reasonable model
resolution cell types. A training dataset cells for random forest classification accuracy for most clusters by comparingb, precision and recall (meanand

was sampled as shown by a, the uniform manifold approximation and projection standard deviation, k = 6). Prediction of the remaining naive 66 % of cells as test
(UMAP) of integrated data. Sampled cells were shown in black covering 33 % datashowninc, the confusion matrix between the reference and predicted cell
ofthe dataset and with 6 folds representing the dataset evenly as shown by classes with high scores for most cell types.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6 | Predicted separation between EPDCs and Mesothelial difficulties. Lower-magnification imaging of b, immunofluorescence using
epicardium with UPK3B, TM4SF1, and POSTN using a, pseudostainon antibodies for KRT19 and POSTN as one strategy for distinguishing between
integrated uniform manifold approximation and projection embeddings EPDCs and Mesothelial epicardiumin fetal cardiac tissue. Images shown are
followed by immunocytochemical staining using antibodies. The UPK3B representative of stains carried out on three sections with each combinationon a
antibody did not label the epicardium clearly as a result of undefined technical single heart (a, BRC2281; b, BRC2375).
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Extended DataFig. 7 | Spatial transcriptomics of a fetal heart with a gestational age of 9 weeks and 4 days. a, H&E staining and spot annotation, bi-iv,
epicardial markers; and ci-vi, expression scores of epicardial gene modules as calculated from the top 20 genes in each module. This experiment was carried
outonce.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
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A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection 10X Genomics Cellranger version 6.1; 10x Genomics Visium Spatial Gene Expression

Data analysis R version 4.0.5; Seurat version 4.0.3; CellPhoneDB version v2.0.0; Scrublet version 0.2.3; Cell2Location version 0.1, Code covering the data
analysis is available from "https://github.com/Hindrance/Adult_Foetal_Epicardial_Comparison_2022".
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- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Both raw
and processed RNA sequencing data generated during this study can be found in the Gene Expression Omnibus (GEO) using the accession identifiers of GSE216019
(Foetal scRNA-seq data) and GSE216177 (hESC-epicardium differentiation). Matrices of adult heart scRNA-seq data are available from the Heart Cell Atlas[27] and
can be accessed at https://www.heartcellatlas.org/#DataSources. Specifically, the adult data file accessed was downloaded here: The specific file used in this study
was https://cellgeni.cog.sanger.ac.uk/heartcellatlas/data/global_raw.h5ad. Finally, the integrated data combining both adult and foetal data may be explored




interactively at http://sinha.stemcells.cam.ac.uk. Human reference genome (GRCh38: refdata-gex-GRCh38-2020-A tar.gz) is available at https://
support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Foetal heart samples are a rare resource and no data was available to determine the expected biological effect size between adult and foetal
cell types. To ensure we captured enough cells, from our pilot dataset containing little over 30 cells identified as epicardium, we determined
an approximate number of cells to capture in order to successfully retrieve sufficient epicardial cells in the following 6 samples. Aiming at a
0.95 probability of success in achieving at least 20 epicardial cells in each sample, we sequenced at least 1600 cells from each heart.

Data exclusions | No samples were wholly excluded from the analysis after collection. Samples from the adult dataset were excluded when not meeting the
criterion - to contain a minimum of 3 mesothelial cells. Individual cells were excluded from analysis using quality control thresholds as
described in the methods.

Replication Initial findings were confirmed after adding further samples and re-analysing the data for revision. Further inclusion of a separate sequencing
technology (single-nuclei RNA sequencing) confirmed our initial findings. All findings were successfully replicated during re-analysis.

Randomization  Thisis a correlational study and no sample randomisation was carried out. Covariates of cell source and donor were controlled for by stratified
sampling to form equal group sizes and minimise variation. Batch-correction was also carried out between age in order to best determine

common cell types between the datasets.

Blinding No blinding was carried out as it was not relevant to our study; the results were derived from cell populations determined by unsupervised
analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Antibodies

Antibodies used UPK3B, PA552696 (Themo Fisher); MSLN, sc33672 (Santa Cruz Biotechnology); KRT19, sc6278 (Santa Cruz Biotechnology); POSTN,
MAB3548 (R& D Systems); DCN, AF143 (R& D Systems) ;PRG4, MABT400 (Sigma-Aldrich); and TM4SF1, MAB8164 (R& D Systems).
The secondary antibodies used were AF488 goat / donkey anti-rabbit A21206 (Invitrogen) for UPK3B; AF647 goat anti-mouse A21240
(Invitrogen) for MSLN, KRT19, and TM4SF1; AF568 goat anti-rat A11077 (Invitrogen) for POSTN; AF647 chicken anti-mouse A21463
(Invitrogen) for PRG4; and AF568 donkey anti-goat A11057 (Invitrogen) for DCN. All primary antibodies were used at a dilution of
1:100. All secondary antibodies were used at a dilution of 1:1000.

Validation UPK3B PA552696 - Manufacturers provide validation in primary bladder tissue, and human cell line A431; MSLN sc33672 -
Experimental validation (Rodriguez-Garcia et al., 2021, PMID 33563975); KRT19 sc6278 - independent validation (Akiyama et al.,
2022, PMID 35279203); POSTN MAB3548 - Independently validated in humans (Tumbarello et al., 2012, PMID: 22640878); DCN
AF143 - Independently validated in humans (Basak et al., 2021, PMID 34379688); PRG4 MABT400 - Independently validated in cows
(Schmidt et al., 2009, PMID 19332105), manufacturers validated in human liver tissue; TM4SF1 MAB8164 - Independently validated
in humans (Zacharias et al., 2018, PMID 29489752).
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) H9-hESCs were used in the differentiation of stem cell derived epicardium acquired from WiCell.

Authentication H9-hESCs were authenticated by the supplier WiCell using short tandem repeat (STR) analysis. This service was provided by
UW Molecular Diagnostics Laboratory.

Mycoplasma contamination All cell lines used in this study were mycoplasma tested and found to be negative.

Commonly misidentified lines No commonly misidentified lines were used in this study.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics Participating donors were anonymous HIV negative and hepatitis negative females; further population characteristics of
donors was not available. Samples provided by donors used in this study were both male and female aged between 8 and 12
weeks post conception and without any current diagnosis or known medical or developmental condition.

Recruitment Donors were recruited voluntarily through self-selection following elective termination after full informed consent. We do
not expect any self-selection bias to impact the results and samples.

Ethics oversight NHS East of England LREC No: 96/085

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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